原始形式的电不能以任何规模存储,但通过使用储能系统 (ESS),它可以转换为其他形式的能量,才可以存储。这些形式的能量可以在需要时重新转换为电能。储能系统提供了广泛的技术方法来管理利来·国际APP的电力供应,以努力创建更具弹性的能源基础设施并为公用事业和消费者节省成本。当前的电力存储系统技术包括电池、飞轮、压缩空气、抽水蓄能等。今天,所有这些系统在它们可以存储的总能量方面仍然有限,但研究继续快速改进这些技术。美国电网建立在电力供应与消费者需求之间的微妙平衡之上。帮助平衡电力供需波动的有效方法是在高产量和低需求时期储存电力,然后在低产量或高需求时期将其释放回电网。在这里,利来·国际APP将讨论电力存储如何为利来·国际APP所有人提供可靠性、经济和环境效益。根据其部署的程度,电力存储可以帮助美国电网更有效地运行,减少高峰需求期间停电的可能性,并允许使用更多的可再生资源。 世界对电力存储的需求不断增长 自发现电以来,许多研究人员和科学家一直在寻找有效的方法来储存能量以供按需使用。在过去的 100 年里,储能行业不断发展和创新,以应对不断变化的电力需求和技术进步。今天,美国的消费者每天 24 小时都在用电。无论利来·国际APP醒着还是睡着,利来·国际APP对电力的需求都是持续不断的。美国消费者倾向于理所当然地认为获得为设备、电器、工具、机器、车辆以及利来·国际APP日夜使用的所有东西供电所需的能量是多么容易。然而,当下比如电动汽车的迅速普及给电网带来了更大的压力,需要满足更大的电力需求。此外,鉴于对电网的重大影响,可再生能源市场(如太阳能、风能等)的技术进步和增长一直是储能需求的重要驱动因素。 储能技术 电力部门的一个主要特征是可以产生的电力水平在短时间内是可以固定的。相反,电力需求全天波动。开发存储电能的技术,以便在需要时随时满足需求,这代表了电力分配方式的重大变化。 储能系统 储能系统 (ESS) 旨在管理需求最大的高峰时段为客户供电所需的电力水平——最终将有助于更顺畅地使用可再生能源,并更容易将其注入配电系统。ESS 还将帮助平衡微电网,以实现发电和负载之间的稳定平衡。储能系统可以提供频率调节——将整个系统的频率保持在 60 Hz,这一点至关重要。这维持了网络负载和产生的功率之间的平衡。此外,ESS 的部署还可以为高科技工业设施提供更可靠的电力供应。储能和电力电子技术为电力行业的转型带来了令人鼓舞的前景。 高压电力电子 开关、控制器和逆变器等高压电力电子设备可以快速、精确地控制电力,以支持长距离传输。这些高压设备将使系统更有效地运行并更快地有效响应干扰。另一个正在解决的主要挑战是降低储能技术和电力电子设备的成本,以加快市场接受度。 美国能源部储能计划 美国能源部电力办公室 (OE) 制定的储能计划(ESP)对各种储能技术进行研究和开发。这一广泛的技术基础包括电池(传统和先进)、电化学电容器、飞轮、电力电子、控制系统以及用于存储优化和尺寸调整的软件工具。ESP 与行业合作伙伴密切合作——它的许多项目都是高度分摊成本的。储能计划ESP 为公用事业和国家能源部门提供了合作设计、采购、安装和调试规模高达几兆瓦的主要开创性存储装置的机会。它还支持对存储技术的技术和经济性能的分析研究,以及对储能系统组件和操作系统的技术评估。增强型储能可以为电力行业及其住宅客户以及工业制造公司和商业企业带来多重好处。这些好处将包括改善电能质量和向客户可靠地输送电力——并将提高输配电系统的稳定性和可靠性。储能计划ESP 鼓励公用事业公司改造现有设备以推迟或消除昂贵的升级——提高可用性并增加分布式电源的市场价值。ESP 为公用事业和供应商提供更高的可再生能源发电价值,并通过更高的容量以及传输支付延期来降低成本。ESP 还致力于通过研究液流电池的先进电解质、低温钠电池的开发以及具有改进的电化学性能的纳米结构电极来提高储能密度。在电力电子领域,碳化硅、氮化镓等新型高压、大功率、高频、宽带隙材料的研究正在推进。此外,对使用高级磁性元件、高压电容器、封装和高级控制以显着提高功率密度和性能的高级电源转换系统的研究正在进行中。 能源地球计划 Energy Earthshots Initiative 是美国能源部制定的另一项计划,旨在在十年内加速突破更丰富、负担得起和可靠的清洁能源解决方案。实现 Energy Earthshots Initiative 将帮助美国解决解决气候危机、发展清洁能源经济以及更快实现到 2050 年净零碳排放目标的最严峻的障碍。 美国能源部DOE – 长期储能 Earthshots Long Duration Storage Energy Earthshots (LDSEE) 制定了一个目标,即在十年内将持续时间超过 10 小时的系统的电网规模储能成本降低 90%。储能有可能加速电网的完全脱碳。目前正在安装较短持续时间的存储以支持当今的可再生能源发电水平。随着越来越多的可再生能源部署在电网上,需要更长持续时间的存储技术。更便宜和更高效的存储将使捕获和存储可再生清洁能源更加可行,以便在能源生产不可用或低于需求时使用。例如,白天产生的可再生能源(如太阳能发电)可以在夜间使用,或者当需求增加时可以使用在低需求时期产生的核能。LDSS 将考虑所有类型的技术——电化学、机械、热、化学载体或任何有可能满足电网灵活性所需持续时间和成本目标的组合。 巨额储能资金 美国能源部的几个办公室开展储能活动,总统的 2022 财年预算申请包括用于这些活动的总计 11.6 亿美元,通过储能大挑战横切面进行跟踪。在等待拨款之前,美国能源部预计会有资金机会和其他活动来帮助推进实现 LDSS 目标的进展,这与美国能源部的储能大挑战路线图一致。 实现净零碳排放的目标 长期地球储能计划(LDSS) 目标是到 2035 年实现电网净零碳排放以及到 2050 年整个经济体实现净零碳排放目标的关键。储能可以加强对电力系统的本地控制,并为电力系统建立弹性经常停电或可能无法接入电网的社区。开发技术和制造以达到 LDSS 成本目标也将在美国建立一个新的存储产品制造业。由于太阳能和风能技术的成本迅速下降,可变可再生能源份额的增加将成为未来的标准。电动汽车的使用正在加速交通部门脱碳的努力。需要在电力部门提供不间断输出的同时适应可变能源供应是一个可以实现的目标。将可再生能源(如太阳能、风能和其他可再生资源)整合到最终使用部门的努力已经显示出巨大的潜力,以及电力储存对于实现深度脱碳的至关重要性。基于快速改进的电池和其他技术的电力存储将允许更大的系统灵活性,随着可变可再生能源的份额不断增加,这是一项关键资产。电力存储可以使以电动汽车为主的交通部门成为可能,实现有效的 24 小时离网太阳能家庭系统,并支持 100% 可再生微型电网。 国际预测 国际可再生能源署(IRENA)在报告《电力储存和可再生能源:成本和市场》中分析了固定应用中一系列电力存储技术的当前成本和性能,以及到 2030 年的成本降低和性能提升潜力到 2030 年。”该报告得出的结论是,到 2030 年,总电力存储容量在能源方面可能会增加两倍。随着可再生能源的迅速采用,这应该足以在不到 15 年的时间内将可再生能源在全球能源结构中的份额翻一番。电池电力存储可能增长 17 倍,电池存储技术的成本可能下降高达 66%。这项研究表明,电池储能系统具有巨大的部署和降低成本的潜力。到 2030 年,总安装成本可能下降 50% 至 60%,电池成本下降更多。这一切都是由制造设施的优化,以及更好的组合和减少材料的使用所驱动的。 |